Quadratic Velocity/linear Pressure Stokes Elements*
نویسندگان
چکیده
We study the finite element approximation of the stationary Stokes equations in the velocitypressure formulation using continuous piecewise quadratic functions for velocity and discontinuous piecewise linear functions for pressure. For some meshes this method is unstable, even after spurious pressure modes are removed. For other meshes there are spurious local pressure modes, but once they are removed the method is stable, and in particular, the velocity converges with optimal order. On yet other meshes there are no spurious pressure modes and the method is stable and optimally convergent for both pressure and velocity.
منابع مشابه
An augmented mixed finite element method for the vorticity–velocity–pressure formulation of the Stokes equations
This paper deals with the numerical approximation of the stationary two-dimensional Stokes equations, formulated in terms of vorticity, velocity and pressure, with non-standard boundary conditions. Here, by introducing a Galerkin least-squares term, we end up with a stabilized variational formulation that can be recast as a twofold saddle point problem. We propose two families of mixed finite e...
متن کاملConforming and divergence-free Stokes elements on general triangular meshes
We present a family of conforming finite elements for the Stokes problem on general triangular meshes in two dimensions. The lowest order case consists of enriched piecewise linear polynomials for the velocity and piecewise constant polynomials for the pressure. We show that the elements satisfy the inf-sup condition and converges optimally for both the velocity and pressure. Moreover, the pres...
متن کاملA simple pressure stabilization method for the Stokes equation
In this paper, we consider a stabilization method for the Stokes problem, using equal-order interpolation of the pressure and velocity, which avoids the use of the mesh size parameter in the stabilization term. We show that our approach is stable for equal-order interpolation in the case of piecewise linear and piecewise quadratic polynomials on triangles. In the case of linear polynomials, we ...
متن کاملOn Nonconforming Linear–constant Elements for Some Variants of the Stokes Equations
The use of nonconforming piecewise linear finite elements for the velocity field and piecewise constant finite elements for the pressure fields, as suggested by Crouzeix and Raviart, gives a simple stable, optimal order approximation to the Stokes equations. As is well-known, however, this method is not stable for the very similar system describing the deformation of an incompressible linearly ...
متن کاملStabilized Finite Element Methods for the Velocity-Pressure-Stress Formulation of Incompressible Flows
Formulated in terms of velocity, pressure and the extra stress tensor, the incompressible Navier-Stokes equations are discretized by stabilized finite element methods. The stabilized methods proposed are analyzed for a linear model and extended to the Navier-Stokes equations. The numerical tests performed confirm the good stability characteristics of the methods. These methods are applicable to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992